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Figure 1. We plot the landmark annotations labeled by different annotators with different colors in view #1 of (a). Accurate annotation
of non-frontal faces with large angles like view #1 is challenging. This is a major problem since small differences between annotated
landmarks in view #1, becomes substantially magnified when projected to view #2. Training a system on such datasets could lead to
poor landmark detection accuracy, as shown in (b). We address this issue by proposing a 3D-aware optimization module that enforces
multi-view consistency. We show the landmark detection improvement in (c). Magnified insets in (b) and (c) are shown in (d). After
refined by the proposed 3D-aware learning, the detected facial landmark is better aligned with the identity.

Abstract

Accurate facial landmark detection on wild images plays
an essential role in human-computer interaction, enter-
tainment, and medical applications. Existing approaches
have limitations in enforcing 3D consistency while detect-
ing 3D/2D facial landmarks due to the lack of multi-view
in-the-wild training data. Fortunately, with the recent ad-
vances in generative visual models and neural rendering,
we have witnessed rapid progress towards high quality 3D
image synthesis. In this work, we leverage such approaches
to construct a synthetic dataset and propose a novel multi-
view consistent learning strategy to improve 3D facial land-
mark detection accuracy on in-the-wild images. The pro-
posed 3D-aware module can be plugged into any learning-
based landmark detection algorithm to enhance its accu-
racy. We demonstrate the superiority of the proposed plug-
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in module with extensive comparison against state-of-the-
art methods on several real and synthetic datasets.

1. Introduction

Accurate and precise facial landmark plays a signif-
icant role in computer vision and graphics applications,
such as face morphing [54], facial reenactment [58], 3D
face reconstruction [17, 18, 30], head pose estimation [38],
face recognition [1, 10, 13, 19, 32, 41, 71], and face genera-
tion [11, 21, 60, 69]. In these applications, facial landmark
detection provides great sparse representation to ease the
burden of network convergence in different training stages
and is often used as performance evaluation metric. For in-
stance, as a facial prior, it provides good initialization for
subsequent training [66, 67, 69, 76], good intermediate rep-
resentation to bridge the gap between different modalities
for content generation [11,27,51,79], loss terms which reg-



ularize the facial expression [11, 52], or evaluation metrics
to measure the facial motion quality [53, 73, 78].

The aforementioned applications require the estimated
facial landmarks to be accurate even with significantly var-
ied facial appearance under different identities, facial ex-
pressions, and extreme head poses. Tremendous efforts
have been devoted to address this problem [15, 22–24, 29,
34,40,56,63,74,75,77,82,84]. These approaches often rely
on manually annotated large-scale lab-controlled or in-the-
wild image datasets [4,34] to handle various factors such as
arbitrary facial expressions, head poses, illumination, facial
occlusions, etc.

However, even with the high cost of human labeling,
consistent and accurate manual annotation of landmarks re-
mains challenging [22,23,34]. It is very difficult, if not im-
possible, to force a person to annotate the facial landmark
keypoints at the same pixel locations for faces of different
poses, let alone different annotators under different labeling
environments. Such annotation inconsistency and inaccu-
racy in training images are often the killing factor to learn
an accurate landmark localization model. This is particu-
larly a major problem in non-frontal faces where annotation
becomes extremely challenging. As shown in Fig. 1(a) a
small annotation variation in view #1, results in a signifi-
cant inaccuracy in view #2. This multi-view inconsistency
and inaccuracy can ultimately lead to poor landmark de-
tection accuracy, especially for facial images with extreme
head pose.

To mitigate this annotation inconsistency and inaccuracy
issue, we propose to learn facial landmark detection by en-
forcing multi-view consistency during training. Given the
images of the same facial identity captured with different
head poses, instead of detecting facial landmark at each sep-
arate facial image, we propose a multi-view consistency su-
pervision to locate facial landmark in a holistic 3D-aware
manner. To enforce multi-view consistency, we introduce
self-projection consistency loss and multi-view landmark
loss in training. We also propose an annotation genera-
tion procedure to exploit the merits of lab-controlled data
(e.g., multi-view images, consistent annotations) and in-the-
wild data (e.g., wide range of facial expressions, identities).
Thanks to this synthetic data, our method does not rely on
human annotation to obtain the accurate facial landmark
locations. Therefore, it alleviates the problem of learning
from inaccurate and inconsistent annotations.

We formulate our solution as a plug-in 3D aware module,
which can be incorporated into any facial landmark detec-
tor and can boost a pre-trained model with higher accuracy
and multi-view consistency. We demonstrate the effective-
ness of our approach through extensive experiments on both
synthetic and real datasets. The main contributions of our
work are as follows:

• We show, for the first time, how to combine the merits

of lab captured face image data (e.g., multi-view) and
the in-the-wild face image datasets (e.g., appearance
diversity). Using our proposed approach we produce
a large-scale synthetic, but realistic, multi-view face
dataset, titled DAD-3DHeads-Syn.

• We propose a novel 3D-aware optimization module,
which can be plugged into any learning-based facial
landmark detection methods. By refining an existing
landmark detection algorithm using our optimization
module, we are able to improve its accuracy and multi-
view consistency.

• We demonstrate the performance improvements of our
module built on top multiple baseline methods on sim-
ulated dataset, lab-captured datasets, and in-the-wild
datasets.

2. Related Work
In this section, we review face landmark datasets and de-

tection algorithms that are most related to our approach. We
also provide a brief review of data simulation tools related
to our work.

2.1. Face Landmark Detection Dataset

Lab-controlled dataset. Datasets under “controlled”
conditions [8, 20, 36, 39, 46, 48, 64, 65, 72] typically col-
lect video/images from indoor scenarios with certain re-
strictions, e.g. pre-defined expressions, head poses, etc. For
example, FaceScape dataset [65] contains 938 individuals
and each with 20 expressions using an array of 68 cameras
under controlled illumination and positions. Thus, it con-
tains aligned and consistent multi-view images and facial
landmark annotations. However, the identities, poses, and
expressions are limited. In addition, the environment condi-
tions are fully controlled. These result in limited generaliza-
tion capability of models trained on this dataset. Moreover,
the annotation workflow of such a dataset is expensive and
hard to scale.
In-the-wild dataset. The boom of internet image sharing
has enabled the creation of many “in-the-wild” facial land-
mark datasets [3,7,32,49,85], collected from the web, to fa-
cilitate facial landmark detection research. However, manu-
ally annotating facial landmarks on in-the-wild images is a
time-consuming process and not scalable. Zhu et al. [83] re-
lease 300W-LP by extending the original 300W dataset with
synthetic images with extreme pose through image profiling
of frontal pose images. However, the novel view images are
generated by simply applying rotation matrix on the orig-
inal images, which leads to limited view range and poor
image quality. Meanwhile, 300W-LP lacks diversity in face
appearance and expression because of the intrinsic limita-
tions of 300W. Recently, Martyniuk et al. [34] introduce a



new dataset, DAD-3DHeads, by proposing a novel anno-
tation scheme. Specifically, their approach allows the an-
notator to adjust the landmarks by looking at how well the
mesh, generated from the landmarks, fits the input image.
The proposed scheme addresses the problems exhibited by
existing labeling tools, such as “guessing” the positions of
the correct landmarks for invisible parts of the head, thus
enabling accurate annotations. DAD-3DHeads dataset con-
tains 44,898 in-the-wild images, covering extreme facial ex-
pressions, poses, and challenging illuminations. However,
the DAD-3DHeads still has some drawbacks. First, even
with the mesh fitting guidance, the annotations can be in-
accurate. As shown in Fig. 1 (a), even a small inaccuracy
in one view could result in a significant inconsistency when
projected to another view. This inconsistency could nega-
tively affect the training of the detection network. Second,
since the depth is estimated by FLAME [33], annotation ac-
curacy is limited by the FLAME model. Third, this dataset
lacks multi-view images, and thus cannot be used to enforce
multi-view consistency.

2.2. Data Simulation

Simulation [26,28,35,42,44,45,50,59,61,62,70] is a use-
ful tool in situations where training data for learning-based
methods is expensive to annotate or even hard to acquire.
For example, Zeng et al. [70] and Richardson et al. [42] use
3D Morphable Model (3DMM) to render training data with
different lighting conditions, identities, expressions, and
texture basis elements for reconstructing detailed facial ge-
ometry. However, the simulated images produced by these
approaches lack realism and have severe domain gaps com-
pared with real-world captures, limiting their usage. Bak et
al. [2] adapt synthetic data using a CycleGAN [81] with
a regularization term for preserving identities. Ayush et
al. [57] use the images and latent code generated by Style-
GAN [81] to train a controllable portrait image generation
model. However, it is hard to control the attribute consis-
tencies of images simulated by generative models, which
limits the usage of the generated datasets.

2.3. Face Landmark Detection Algorithms

Traditional facial landmark detection methods leverage
either holistic facial appearance information [12], or the
global facial shape patterns [31, 85]. They yield reasonable
results for images captured in lab-controlled environments
with frontal faces and good lighting, however the perfor-
mance on most of in-the-wild images is inferior.

Recently, deep learning-based algorithms have made
promising progress on 2D facial landmark localization [15,
22–24,29,34,40,56,63,74,75,77,82,84] in terms of robust-
ness, generalizability, and accuracy. FAN [6] constructs, for
the first time, a very strong baseline by combining a state-
of-the-art residual block and a state-of-the-art architecture

Figure 2. The feature comparison of different type of datasets.
For example, FaceScape [65] and MultiFace [64] are lab-
controlled datasets, while 300W [47], AFLW2000 [68], and DAD-
3DHeads [34] are in-the-wild datasets.
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Figure 3. The proposed data simulation pipeline.

for landmark localization and trains it on a very large yet
synthetically expanded 2D facial landmark dataset. To ad-
dress self-occlusion and large appearance variation, Zhu et
al. [82] propose a cascaded convolutional neural network
and optimized weighted parameter distance cost loss func-
tion to formulate the priority of 3DMM parameters during
training instead of predicting facial landmark keypoints. To
further address the problems of shape reconstruction and
pose estimation simultaneously, Martyniuk et al. propose
an end-to-end trained DAD-3DNet [34] to regress 3DMM
parameters and recover the 3D head geometry with differ-
ential FLAME decoder. However, due to the intrinsic limi-
tation of the manually annotated in-the-wild dataset, the de-
tection results are affected by the annotation noise and the
3D inconsistency of the single view images. In this paper,
we mainly focus on improving the performance of deep-
learning based methods.

3. Balanced and Realistic Multi-view Face
Dataset

We believe there are five desired properties that a good
facial landmark dataset should fulfill: (1) contain full range
of multi-view images; (2) bridge the domain gap between
the dataset and the real-world captured images; (3) con-
tain diverse facial appearance including different poses, ex-
pressions, illuminations, and identities; (4) have consistent
and accurate annotations across the whole dataset; (5) be



easy to obtain and scalable. The existing datasets can are
either lab-controlled captures [64, 65] or in-the-wild col-
lected [34, 47, 68]. Unfortunately, these datasets lack one
or more desired attributes. In contrast, our dataset meets all
of these criteria (Fig. 2).

Unlike previous graphics or generative model-based data
synthesis approaches described in Sec. 2.2, we propose a
novel facial dataset simulation scheme by leveraging Neu-
ral Radiance Field (NeRF) [37] to facilitate training a facial
landmark detection network. Fig. 3 shows our dataset cre-
ation pipeline. We generate multiview images with consis-
tent landmarks using a single in-the-wild image along with
annotated landmark as input.

Specifically, we choose DAD-3DHeads [34] as our ini-
tial dataset since it contains images under a variety of ex-
treme poses, facial expressions, challenging illuminations,
and severe occlusions cases. Given an image and its land-
marks from this dataset, our goal is to reconstruct multi-
view images with their corresponding landmarks. Inspired
by GAN inversion [80], we first fit a latent code to each im-
age in DAD-3DHeads datasets using EG3D [9] as decoder
by following Pivotal Tuning Inversion (PTI) [43]. Note that,
EG3D GAN inversion requires the camera pose of the input
image, which we estimate using Deep3DFace [14]. Then
we can use EG3D to decode the optimized latent code to
NeRF. Next, we use volume rendering on the NeRF with
512 uniformly sampled camera views from a large view
range, producing 512 multi-view images.

To obtain the landmarks for each image, we start with
the well-annotated groundtruth 2D landmarks of the origi-
nal images from the DAD-3DHeads dataset. Then we use
the estimated camera pose of the input image to unproject
the annotated landmarks to 3D space. At last, we project the
3D landmarks to the 512 sampled camera views to obtain
landmark annotation on the simulated views. The simulated
dataset not only inherits the merits of DAD-3DHeads (e.g.
diverse identities, expressions, poses, and illuminations),
but also comes with a lot of new features (e.g., balanced
head pose, consistent annotation, and multi-view images).
In total, there are 2,150,400 training pairs and 204,800 test-
ing pairs in our extended dataset, called DAD-3DHeads-
Syn.

4. 3D-Aware Multi-view Consistency Training

4.1. Overview

The state-of-the art landmark detectors [5, 34] can out-
put reasonable results on in-the-wild images. However, we
may observe that the predicted landmark are floating on the
face surface instead of fitting the face perfectly in a lot of
cases. We can easily verify if the detected landmark fits the
face by projecting the detected landmark to another view
(see Fig. 1(a)). Armed by this observation of multi-view in-

Algorithm 1 3D-Aware Plug-in Module.

1: Input: pretrained detector F with weights θ, M single-
view images I1,...,M ∈ D along with ground truth land-
mark L1,...,M , paired N multi-view images V1,...,N ∈
D̂ along with ground truth landmark L1,...,N .

2: Output: detector F with updated weights θ∗

3: Initialization: set θ to pre-trained weights
4: Unfreeze θ
5: for number of iterations do
6: Output predicted landmarks L̂1,...,N for each view.
7: Randomly sample P landmarks from them, (1 <

P ≤ N ).
8: Cast the landmarks into world space and estimate

the approximate 3D landmark L̇ using Eq. 2, 3, 4, 5
9: Project L̇ onto the image planes of remaining Q

views (Q = N − P ) using Eq. 6, 7
10: Calculate Total Loss L using Eq. 11
11: θ∗ ← Adam{L}

consistency and inaccuracy, we propose a novel 3D-Aware
training module R to further improve the performance of
baseline detection algorithm F .

Given a facial landmark detection network Fθ(·) pre-
trained on dataset D, the proposed module R further re-
fines the network parameters θ by leveraging our simulated
DAD-3DHeads-Syn dataset D̂ in addition to the original
dataset D. Our moduleR can be formulated as:

Fθ∗ ←− R(Fθ, X, V1,...,N ), X ∈ D, V1,...,N ∈ D̂, (1)

where X is the image batch sampled from D and V1,...,N

are N multi-view images sampled from D̂. We refine the
network parameters θ through exploring 3D information
among multi-view images and applying a novel projection
consistency during the fine-tuning process. Our module
R does not result in any new network parameters and can
be plugged into any learning-based network. We show the
training protocol in Alg. 1.

4.2. Multi-view Consistency Supervision

We propose a novel multi-view supervision to force the
baseline network to learn to be 3D consistent. To simplify
notation, we ignore the batch dimension and fixed camera
intrinsic matrix. For every training iteration, we randomly
sample N image and landmark pairs {V,L}1,...,N from D̂
and M image and landmark pairs {I,L}1,...,M from initial
dataset D*.

We pass V1,...,N to the baseline network F to obtain
predicted landmarks L̂1,...,N which are shown with green

*D is DAD-3DHeads dataset when training DAD-3DNet and is
AFLW2000-3D when training 3DDFA.



Figure 4. Multi-view Consistency Supervision. Predicted land-
marks L̂1,...,N , estimated 3D landmark L̇, projected landmarks
L̃1,...,Q, and ground truth landmarks L are denoted as green, blue,
red, and yellow points respectively. The processes of calculating
3D landmark L̇ and the projection procedure are shown as light
blue and pink arrows, respectively. LSelf-Cons and LMultiview are rep-
resented as red and light green lines, respectively.

points in Fig. 4. We then randomly select P predicted land-
marks L̂1,...,P ∈ RP×68×2 from L̂1,...,N to calculate the
“canonical” 3D landmark L̇ ∈ R68×3, as shown by the blue
point in Fig. 4. We calculate each keypoint of the “canon-
ical” 3D landmark L̇(k) ∈ R3, 1 ≤ k ≤ 68 through Direct
Linear Transformation (DLT) [16, 25], as follows:

µp = Mp[0, :]−Mp[2, :] · L̂k
p[0] ∈ R4, (2)

υp = Mp[1, :]−Mp[2, :] · L̂k
p[1] ∈ R4, (3)

A = [µ1 | µ2 | ... | µp | υ1 | υ2 | ... | υp]T ∈ R2P×4, (4)

L̇(k) =
(

A[:, : 3]T A[:, : 3]
)−1

A[:, : 3]T (−A[:, 3]), (5)

where, p, 1 ≤ p ≤ P , is the index of views, and M1,...,P

are the corresponding camera extrinsic matrices which are
pre-defined for view synthesis during volume rendering (see
Sec.3). Moreover, Mp[i, :] indicates the i-th row of Mp,
A[:, : i] indicates columns 0 to i − 1 of A, and A[:, i] in-
dicates the i-th column of A. By Eq. 2 and Eq. 3, we
first calculate the projection constraints for L̇(k), i.e., µp[:

3] · L̇(k) + µp[3] = 0, where ‘·’ indicates the dot product.
Then we stack all of the constraints into A ∈ R2P×4 by
Eq. 4. At last, we compute L̇(k) with a least square approach
(Eq. 5).

After obtaining the “canonical” 3D landmark L̇, we
project it onto the image planes of rest of Q = N − P
views to obtain the projected landmark L̃1,...,Q, shown as
red points in Fig. 4, by the following equations:

s = Mq[:, : 3]L̇
(k) +Mq[:, 3] ∈ R3×1, (6)

L̃(k)
q =

[
s[0]/s[2]
s[1]/s[2]

]
∈ R2×1, (7)

where, in our case, 1 ≤ q ≤ Q. Eq. 6 transfroms 3D land-
mark from "canonical" space to the camera space of view q,
and Eq. 7 transforms it from camera space to image space.

Self-Projection Consistency Loss. Since all M views
are sampled from one NeRF with different camera views,
the predicted landmarks L̂1,...,Q and the projected land-
marks L̃1,...,Q should be consistent. Therefore, we propose
to minimize the error between the predicted and projected
landmarks as follows:

LSelf-Cons =

Q∑
q=1

∥ L̂q − L̃q ∥1 . (8)

Mesh Consistency Loss* Besides the self-projection
consistency, all the N views also share one mesh topology
in the canonical space. Therefore, we apply a mesh consis-
tency loss in canonical space calculated by:

LMesh-Cons =

N∑
n=1

∥ M̂n − Ṁ ∥2, (9)

where M̂n is the predicted mesh of view n in the canoni-
cal space, and Ṁ is the ground truth mesh of the original
reference image.

Multiview Landmark Loss. We also minimize the dis-
tance between the predicted 2D facial landmarks and the
corresponding multi-view ground truth landmarks we ob-
tained in Sec. 3, which are denoted as yellow points in
Fig. 4. The loss can be formulated as follows:

LMultiview =

N∑
q=1

∥ L̂q − Lq ∥1 . (10)

We also incorporate the original loss of the baseline
method computed with the image and landmark pairs
{I, L}1,..,M from datasetD to stabilize our 3D-aware train-
ing. The overall loss is:

L = λ1LSelf-Cons + λ2LMesh-Cons + λ3LMultiview + Loriginal,
(11)

where λ1,2,3 are hyper parameters that control the contribu-
tion of each components. We set λ1,2,3 to 0.1 empirically.

Note that our training is a plug-in module and can be
incorporated into any existing facial landmark detector eas-
ily. For different pretrained models, we just need to change
Loriginal, while the other novel loss components calculated
on our balanced synthetic dataset D can be applied directly.
We show this plug-in capability on top of different base-
line methods (e.g., DAD-3DNet [34] and 3DDFA [22]), and
demonstrate that our 3D-aware training indeed improves
their performance (see Sec. 5).

*We can apply it depending on whether the baseline network outputs
mesh. In our case, the 3DDFA [22] and DAD-3DNet [34] both do.



Table 1. Facial landmark detection result (NME) on DAD-
3DHeads [34], FaceScape [65], and MultiFace [64]. Lower values
mean better results.

Method DAD-3DHeads FaceScape MultiFace
FAN [6] 7.141 16.74 16.143
Dlib [31] 10.841 29.431 18.205
3DDFA-V2 [23] 2.926 6.853 5.942
3DDFA [22] 4.082 7.988 8.121
3DDFA+ 3.784 7.425 7.305
DAD-3DNet [34] 2.599 6.681 5.786
DAD-3DNet+ 2.503 6.050 5.480

5. Experiments
5.1. Experimental Settings

Training Details. We implement our algorithm in Py-
torch and adopt ADAM to optimize the baseline networks.
We run our 3D-aware training for 100 epochs with a batch
size of 4, and a learning rate of 1 × 10−4 on each base-
line network. As to computational cost, fine-tuning DAD-
3DNet take about and 16.25 hours on 4 NVIDIA RTX
A6000 GPUs.
Dataset. Besides DAD-3DHeads, we use two additional
datasets to conduct the evaluations.

• DAD-3DHeads [34] is the state-of-the-art in-the-wild
3D head dataset, which contains dense, accurate anno-
tations, and diverse facial appearances. It consists of
44,898 images collected from various sources (37,840
in the training set, 4,312 in the validation set, and 2,746
in the test set).

• FaceScape [65] is a large-scale high-quality lab-
controlled 3D face dataset, which contains 18,760 ex-
amples, captured from 938 subjects and each with 20
specific expressions.

• MultiFace [64] is a new multi-view, high-resolution
human face dataset collected from 13 identities for
neural face rendering.

Training and Testing Split. In all the experiments, we
only refine the baseline models with the training set of
our DAD-3DHeads-Syn and their original training dataset.
We use the test sets of DAD-3DHeads-Syn and DAD-
3DHeads [34], and use the full datasets of FaceScape [65]
and MultiFace [63] for performance evaluation. All the
comparison methods have not been trained on the split test
sets.
Evaluation Metrics. We evaluate the facial landmark dis-
tance by calculating the Normalized Mean Error (NME).
We normalize the landmark error by dividing its image res-
olution instead of the eye distance [55], since all the test
images are aligned with offline tools. We calculate the head

pose error by the absolute distance of the Euler angle val-
ues.

5.2. Quantitative Evaluation

Landmark Detection Results. The quantitative
landmark detection results on DAD-3DHeads [34],
FaceScape [65], and MultiFace [64] are shown in Tab. 1.
We can find that the DAD-3DNet+ refined by our 3D-
aware multi-view consistency training achieves the best
performance on all three datasets. Moreover, according to
the results of 3DDFA [22], 3DDFA+, DAD-3DNet [34],
and DAD-3DNet+, we find that after refinement, the new
models (3DDFA+ and DAD-3DNet+) achieve much better
results than the baseline models. For example, the detection
error of DAD-3DNet [34] drops 0.631 and 0.306, a 9% and
5% improvement, on FaceScape and MultiFace datasets,
respectively. Similarly, we improve the 3DDFA [22]
by 0.298 (7%), 0.563 (7%), and 0.816 (10%) on DAD-
3DHeads, FaceScape and MultiFace datasets, respectively.
We attribute the improvement to our proposed 3D aware
multi-view training. One interesting phenomenon is that all
the methods perform better on DAD-3DHeads dataset than
the other two lab-captured datasets. We attribute this to the
extreme head pose and challenging facial expressions in
the other two datasets. We plot the head pose distribution
of DAD-3DHeads (see supplementary materials) and find
that distribution of head pose is not as uniform as the other
two lab-controlled datasets.
Head Pose Estimation Results. Tab. 2 shows the
head pose estimation error on DAD-3DHeads [34] and
FaceScape [65]. Our DAD-3DNet+ achieves best perfor-
mance in most metrics. Similar to the landmark results,
we can also conclude that head pose detection accuracy
of the baseline methods (3DDFA and DAD-3DNet) is im-
proved by our 3D aware multi-view consistency (3DDFA+
and DAD-3DNet+). For example, after refinement, DAD-
3DNet+ achieves 11.9% and 18.8% performance boosts in
overall head pose error on DAD-3DHeads and FaceScape
dataset, respetively.

5.3. Qualitative Evaluation

We fist show visual comparisons on images randomly
sampled from DAD-3DHeads test set [34] in Fig. 5. The
landmark predicted by our DAD-3DNet+ model fits the
individual’s face tighter than the other predictions. Fur-
thermore, by comparing the third (3DDFA [22]) and forth
columns (ours), we can see that refining model (3DDFA+)
improves the landmark accuracy dramatically. Similar vi-
sual improvements can be found in sixth (DAD-3DNet) and
seventh (DAD-3DNet+) columns as well. Comparing the
sixth and seventh column, we can see that the refinement
training drags and rotates the landmark in 3D space to better
fit it to the individual’s face surface. We attribute this abil-
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Figure 5. The visual results of Dlib [31], FAN [5], 3DDFA [22], our refined 3DDFA+, 3DDFA-V2, DAD-3DNet [34], and our refined
DAD-3DNet+ on images randomly sampled from DAD-3DHeads [34] testing set. We show the enlarged error region (while box) in the
middle row.

Table 2. Head pose estimation results (head pose error) on DAD-3DHeads [34], FaceScape [65]. Lower values mean better results.

DAD-3DHeads FaceScape
Pitch Roll Yaw Overall Pitch Roll Yaw Overall

FAN [5] 9.765 5.376 6.390 7.177 8.774 4.895 6.556 6.742
Dlib [31] 13.352 11.799 14.654 13.268 17.861 12.663 19.548 16.691
3DDFA-V2 [23] 7.901 4.989 6.088 6.326 13.741 9.718 11.353 11.604
3DDFA [22] 9.895 7.977 8.996 8.956 20.789 18.145 19.692 19.752
3DDFA+ 9.195 6.792 8.692 8.226 20.996 16.426 19.054 18.826
DAD-3DNet [34] 8.274 4.666 9.206 7.382 15.851 9.676 18.346 14.624
DAD-3DNet+ 7.700 4.274 7.528 6.500 14.466 7.247 13.876 11.863

ity to our 3D-aware multi-view consistency training, which
lets the refined model gain the better sense in 3D space, and
therefore, improve the landmark detection results.

To further validate the improvement gained by the pro-
posed 3D-aware multi-view consistency training, we show
the visual results (Fig. 6) of 3DDFA [22], our refined
3DDFA+, DAD-3DNet [34], and our refined DAD-3DNet+
on images sampled from four different test sets. We can find
that our proposed refinement improves the landmark detec-
tion results in the eye, mouth, and face contour regions,
which usually contain more appearance dynamics than the
other areas.

5.4. Performance Improvement Analysis

To systematically understand the source of improvement
after refining the baseline methods (DAD-3DNet [34] and
3DDFA [22]) with our proposed 3D-aware multi-view con-
sistency training, we further calculate and plot the landmark
and head pose error improvements on DAD-3DHeads [34]
(see Fig. 7). Instead of calculating the overall improved

error score, we split all the testing images into different
groups according to their head pose value and calculate the
improved error score within each group. We can find that
the improvement by our training gets more obvious as the
head pose gets more challenging. For example, the land-
mark error improvement (Fig. 7 upper section) using our
method built on top of 3DDFA [22] increases from 0.12
to 0.71. Similarly, the head pose estimation error (Fig. 7
lower section) improvement using our method built on top
of DAD-3DNet [34] increases from 0.02 to 2.7. We also
show the detection result visualization in Fig. 8. We can see
that from left to right, as the head pose increases, the error of
the DAD-3DNet+ (second row) is more stable than the error
(first row) of the DAD-3DNet. Base on this trend, we con-
clude that our proposed 3D-aware multi-view consistency
training provides a more significant improvement over the
baselines on images with larger head pose. This verifies our
hypothesis that multi-view consistency training enables the
network to learn 3D-aware information, which benefits the
detection results on images with large head pose.
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Figure 6. The visual comparisons between baseline methods and
the refined methods on four testing sets. The left column and upper
row list the dataset and method names, respectively. ’+’ denotes
the model that has been refined by our 3D-aware training.

Figure 7. The landmark (top) and head pose (bottom) error im-
provement over DAD-3DNet [34] and 3DDFA [22] on images
from different head pose ranges. The solid and dotted lines indi-
cate DAD-3DNet [34] vs. DAD-3DNet+ (ours) and 3DDFA [22]
vs. 3DDFA+ (ours).

5.5. Ablation Study

We conduct ablation study on FaceScape [65] to verify
the importance of main components of our novel design. As
shown in Tab. 3, we calculate NME of landmark and MAE
of pose estimation in these ablation experiments. Based
on these numbers, we can see the performance degrades
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Figure 8. The error visualization of DAD-3DNet [34] and our
DAD-3DNet+ on MultiFace [64] dataset. The white and green
dots are the ground truth and predicted landmarks, respectively.
We use the red line to show the error distance. From left to right,
the head pose increases gradually.

Table 3. Ablation Study on FaceScape [65]. The top 2 numbers
are shown in bold.

Component NME ↓ Pose ↓
1 full model (P=4) 6.050 11.863
2 w/o LMesh-Cons 6.168 12.327

3 w/o LSelf-Cons 6.541 13.623

4 full model (P=8) 6.048 11.923
5 full model (P=16) 6.098 11.902

6 full model (P=32) 6.139 11.912

drastically when we remove LSelf-Cons. Moreover, remov-
ing LMesh-Cons negatively impacts the results, demonstrating
its importance. Moreover, estimating the 3D landmarks in
the world space using fewer views leads to better results.
This is a significant advantage as it makes our fine-tuning
process more efficient.

6. Conclusion

We propose 3D-aware multi-view consistency training, a
new framework for improving deep-learning base landmark
detection algorithms. Through a set of novel loss functions,
we force the network to produce landmarks that are 3D con-
sistent. We additionally introduce a novel dataset simula-
tion pipeline to combine the merits of lab-controlled cap-
tures and in-the-wild collected images. The model refined
by our method outperforms previous approaches in terms
of landmark detection accuracy and head pose estimation
accuracy. Admittedly, our work has some limitations. For
example, our proposed training relies on the performance
of the baseline method. If the pretrianed baseline yield poor
initial predictions, our DLT would fail to estimate reason-
able canonical 3D landmark, affecting the performance of
the proposed self-projection consistency loss. Investigating
ways to reduce the reliance on the accuracy of the baseline
methods would be an interesting future research.
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Krashenyi, Jiři Matas, and Viktoriia Sharmanska. Dad-
3dheads: A large-scale dense, accurate and diverse dataset
for 3d head alignment from a single image. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 20942–20952, 2022.

[35] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazir-
bas, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox.
What makes good synthetic training data for learning dispar-
ity and optical flow estimation? International Journal of
Computer Vision, 126(9):942–960, 2018.

[36] Kieron Messer, Jiri Matas, Josef Kittler, Juergen Luettin,
Gilbert Maitre, et al. Xm2vtsdb: The extended m2vts
database. In Second international conference on audio and
video-based biometric person authentication, volume 964,
pages 965–966. Citeseer, 1999.

[37] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.

[38] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. Head
pose estimation in computer vision: A survey. IEEE
transactions on pattern analysis and machine intelligence,
31(4):607–626, 2008.

[39] P Jonathon Phillips, Patrick J Flynn, Todd Scruggs, Kevin W
Bowyer, Jin Chang, Kevin Hoffman, Joe Marques, Jaesik
Min, and William Worek. Overview of the face recognition
grand challenge. In 2005 IEEE computer society conference
on computer vision and pattern recognition (CVPR’05), vol-
ume 1, pages 947–954. IEEE, 2005.

[40] Shengju Qian, Keqiang Sun, Wayne Wu, Chen Qian, and Ji-
aya Jia. Aggregation via separation: Boosting facial land-

mark detector with semi-supervised style translation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10153–10163, 2019.

[41] Rajeev Ranjan, Vishal M Patel, and Rama Chellappa. Hy-
perface: A deep multi-task learning framework for face de-
tection, landmark localization, pose estimation, and gender
recognition. IEEE transactions on pattern analysis and ma-
chine intelligence, 41(1):121–135, 2017.

[42] Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel.
Learning detailed face reconstruction from a single image.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1259–1268, 2017.

[43] Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel
Cohen-Or. Pivotal tuning for latent-based editing of real im-
ages. ACM Transactions on Graphics (TOG), 42(1):1–13,
2022.

[44] Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Chris-
tian Riess, Justus Thies, and Matthias Nießner. Faceforen-
sics++: Learning to detect manipulated facial images. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 1–11, 2019.

[45] Nataniel Ruiz, Samuel Schulter, and Manmohan Chandraker.
Learning to simulate. In International Conference on Learn-
ing Representations, 2019.

[46] Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge:
The first facial landmark localization challenge. In Pro-
ceedings of the IEEE international conference on computer
vision workshops, pages 397–403, 2013.

[47] Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. 300 faces in-the-wild challenge:
The first facial landmark localization challenge. In Pro-
ceedings of the IEEE international conference on computer
vision workshops, pages 397–403, 2013.

[48] Christos Sagonas, Georgios Tzimiropoulos, Stefanos
Zafeiriou, and Maja Pantic. A semi-automatic methodology
for facial landmark annotation. In Proceedings of the IEEE
conference on computer vision and pattern recognition
workshops, pages 896–903, 2013.

[49] Jie Shen, Stefanos Zafeiriou, Grigoris G Chrysos, Jean Kos-
saifi, Georgios Tzimiropoulos, and Maja Pantic. The first
facial landmark tracking in-the-wild challenge: Benchmark
and results. In Proceedings of the IEEE international con-
ference on computer vision workshops, pages 50–58, 2015.

[50] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning
from simulated and unsupervised images through adversarial
training. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2107–2116, 2017.

[51] Linsen Song, Wayne Wu, Chaoyou Fu, Chen Change Loy,
and Ran He. Audio-driven dubbing for user generated con-
tents via style-aware semi-parametric synthesis. IEEE Trans-
actions on Circuits and Systems for Video Technology, 2022.

[52] Linsen Song, Wayne Wu, Chen Qian, Ran He, and
Chen Change Loy. Everybody’s talkin’: Let me talk as you
want. IEEE Transactions on Information Forensics and Se-
curity, 17:585–598, 2022.



[53] Yang Song, Jingwen Zhu, Dawei Li, Andy Wang, and
Hairong Qi. Talking face generation by conditional recur-
rent adversarial network. In Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 919–925. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2019.

[54] Luuk Spreeuwers, Maikel Schils, and Raymond Veldhuis.
Towards robust evaluation of face morphing detection. In
2018 26th European Signal Processing Conference (EU-
SIPCO), pages 1027–1031. IEEE, 2018.

[55] Keqiang Sun, Wayne Wu, Tinghao Liu, Shuo Yang, Quan
Wang, Qiang Zhou, Zuochang Ye, and Chen Qian. Fab:
A robust facial landmark detection framework for motion-
blurred videos. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 5462–5471,
2019.

[56] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep convolu-
tional network cascade for facial point detection. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3476–3483, 2013.

[57] Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian
Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zoll-
hofer, and Christian Theobalt. Stylerig: Rigging style-
gan for 3d control over portrait images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6142–6151, 2020.

[58] Justus Thies, Michael Zollhofer, Marc Stamminger, Chris-
tian Theobalt, and Matthias Nießner. Face2face: Real-time
face capture and reenactment of rgb videos. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2387–2395, 2016.

[59] Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mi-
haela van der Schaar. Decaf: Generating fair synthetic data
using causally-aware generative networks. Advances in Neu-
ral Information Processing Systems, 34:22221–22233, 2021.

[60] Ting-Chun Wang, Ming-Yu Liu, Andrew Tao, Guilin Liu,
Jan Kautz, and Bryan Catanzaro. Few-shot video-to-video
synthesis. In Advances in Neural Information Processing
Systems (NeurIPS), 2019.

[61] Erroll Wood, Tadas Baltrušaitis, Charlie Hewitt, Sebastian
Dziadzio, Thomas J Cashman, and Jamie Shotton. Fake it
till you make it: face analysis in the wild using synthetic
data alone. In Proceedings of the IEEE/CVF international
conference on computer vision, pages 3681–3691, 2021.

[62] Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency,
Peter Robinson, and Andreas Bulling. Learning an
appearance-based gaze estimator from one million synthe-
sised images. In Proceedings of the Ninth Biennial ACM
Symposium on Eye Tracking Research & Applications, pages
131–138, 2016.

[63] Yue Wu, Zuoguan Wang, and Qiang Ji. Facial feature track-
ing under varying facial expressions and face poses based
on restricted boltzmann machines. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 3452–3459, 2013.

[64] Cheng-hsin Wuu, Ningyuan Zheng, Scott Ardisson, Rohan
Bali, Danielle Belko, Eric Brockmeyer, Lucas Evans, Timo-
thy Godisart, Hyowon Ha, Alexander Hypes, Taylor Koska,

Steven Krenn, Stephen Lombardi, Xiaomin Luo, Kevyn
McPhail, Laura Millerschoen, Michal Perdoch, Mark Pitts,
Alexander Richard, Jason Saragih, Junko Saragih, Takaaki
Shiratori, Tomas Simon, Matt Stewart, Autumn Trimble,
Xinshuo Weng, David Whitewolf, Chenglei Wu, Shoou-I Yu,
and Yaser Sheikh. Multiface: A dataset for neural face ren-
dering. In arXiv, 2022.

[65] Haotian Yang, Hao Zhu, Yanru Wang, Mingkai Huang, Qiu
Shen, Ruigang Yang, and Xun Cao. Facescape: a large-scale
high quality 3d face dataset and detailed riggable 3d face pre-
diction. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 601–610, 2020.

[66] Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin.
Apdrawinggan: Generating artistic portrait drawings from
face photos with hierarchical gans. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10743–10752, 2019.

[67] Ran Yi, Zipeng Ye, Ruoyu Fan, Yezhi Shu, Yong-Jin Liu, Yu-
Kun Lai, and Paul L Rosin. Animating portrait line drawings
from a single face photo and a speech signal. In ACM SIG-
GRAPH 2022 Conference Proceedings, pages 1–8, 2022.

[68] Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Man-
mohan Chandraker. Towards large-pose face frontalization
in the wild. In In Proceeding of International Conference on
Computer Vision, Venice, Italy, October 2017.

[69] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and
Victor Lempitsky. Few-shot adversarial learning of realistic
neural talking head models. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9459–
9468, 2019.

[70] Xiaoxing Zeng, Xiaojiang Peng, and Yu Qiao. Df2net: A
dense-fine-finer network for detailed 3d face reconstruction.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 2315–2324, 2019.

[71] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.
Joint face detection and alignment using multitask cascaded
convolutional networks. IEEE signal processing letters,
23(10):1499–1503, 2016.

[72] Xing Zhang, Lijun Yin, Jeffrey F Cohn, Shaun Cana-
van, Michael Reale, Andy Horowitz, and Peng Liu. A
high-resolution spontaneous 3d dynamic facial expression
database. In 2013 10th IEEE international conference and
workshops on automatic face and gesture recognition (FG),
pages 1–6. IEEE, 2013.

[73] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie
Fan. Flow-guided one-shot talking face generation with
a high-resolution audio-visual dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3661–3670, 2021.

[74] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Facial landmark detection by deep multi-task learning.
In European conference on computer vision, pages 94–108.
Springer, 2014.

[75] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou
Tang. Learning deep representation for face alignment with
auxiliary attributes. IEEE transactions on pattern analysis
and machine intelligence, 38(5):918–930, 2015.



[76] Aihua Zheng, Feixia Zhu, Hao Zhu, Mandi Luo, and Ran He.
Talking face generation via learning semantic and temporal
synchronous landmarks. In 2020 25th International Con-
ference on Pattern Recognition (ICPR), pages 3682–3689.
IEEE, 2021.

[77] Erjin Zhou, Haoqiang Fan, Zhimin Cao, Yuning Jiang, and
Qi Yin. Extensive facial landmark localization with coarse-
to-fine convolutional network cascade. In Proceedings of
the IEEE international conference on computer vision work-
shops, pages 386–391, 2013.

[78] Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy,
Xiaogang Wang, and Ziwei Liu. Pose-controllable talking
face generation by implicitly modularized audio-visual rep-
resentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4176–4186,
2021.

[79] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevar-
ria, Evangelos Kalogerakis, and Dingzeyu Li. Makelttalk:
speaker-aware talking-head animation. ACM Transactions
on Graphics (TOG), 39(6):1–15, 2020.

[80] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain gan inversion for real image editing. In European
conference on computer vision, pages 592–608. Springer,
2020.

[81] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017.

[82] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and
Stan Z Li. Face alignment across large poses: A 3d solu-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 146–155, 2016.

[83] Xiangyu Zhu, Zhen Lei, Xiaoming Liu, Hailin Shi, and
Stan Z Li. Face alignment across large poses: A 3d solu-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 146–155, 2016.

[84] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face
alignment in full pose range: A 3d total solution. IEEE
transactions on pattern analysis and machine intelligence,
41(1):78–92, 2017.

[85] Xiangxin Zhu and Deva Ramanan. Face detection, pose es-
timation, and landmark localization in the wild. In 2012
IEEE conference on computer vision and pattern recogni-
tion, pages 2879–2886. IEEE, 2012.


